Module é6: Logic circuits with DNA
strand displacement (part 2)

CSES90: Molecular programming and neuradl
computation.
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Fluorescent reporters can e used 1o
follow reaction kinetics
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Toehold strength determines reaction

rate
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Competition and thresholding
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Competition and thresholding
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Competition and thresholding
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Amplification: An input can act

catalytically and release multiple outpufts
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Qian and Winfree, Science (201 1)
(see also Zhang et al. Science (2007), Seelig et al. JACS (2006), Turberfield et al. PRL (2004))
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Amplification: An input can act

catalytically and release multiple outpufts

Seesaw catalyst components
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(see also Zhang et al. Science (2007), Seelig et al. JACS (2006), Turberfield et al. PRL (2004))
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Combining amplitication and

thresholding

Seesaw catalyst components
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Combining amplification and

thresholding
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Slide credit: Lulu Qian
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Seesaw OR logic
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Slide credit: Lulu Qian
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Seesaw AND logic
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Slide credit: Lulu Qian
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Logic gate cascades
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Slide credit: Lulu Qian
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Logic gate cascades
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Logic gate cascades
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Slide credit: Lulu Qian
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Logic gate cascades
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Slide credit: Lulu Qian
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Multi Input logic gates
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Slide credit: Lulu Qian
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Multl output logic gates

X4 R .
o e
X, X !
1 - 1 e 0 —Dﬁ Y2
H H
= 05 = 05 ¢
: : S
Y Y | 01 0
00 2 4 6 8 o0 2 4 6 8 0°0
Time (hours) Time (hours) ; _Df Vs
1 : 1
H H
5 0.5/ I =05 -
O Y3 O Ya
00 2 4 6 8 00 2 4 6 8
Time (hours) Time (hours)

0=0.1x 1=0.9x 1x =100 nM
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A four-bit square root circuit
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A four-bit square root circuit
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A four-bit square root circuit
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A four-bit square root circuit
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Take home message so far

We can build simple logic gates and circuits using
DNA. DNA strand displacement circuits are the
largest engineered molecular circuits built so far. But
they are still really small compared to electronic

ciruits or biological gene regulatory networks.

C D_O”t _ / <
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Differences and similarities between

electronic and molecular circuits

|. Lack of spatial isolation limits reusability and leads to crosstalk

2. Computation energy and non-reusable gates: Both inputs and gates are consumed
as the circuit is evaluated by cascade reactions, so they cannot be reused.

3. Data encoding: Information is encoded in the sequences and concentration of
biomolecules.

4. Lack of clear hardware software separation: Gates and circuits come pre-
programmed for the specific computation they are meant to carry out.

5. Speed of computation: A circuits evaluation under typical reaction conditions takes
minutes to hours.

6. Need for dual-rail logic: NOT is difficult to implement
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One way forward: spaftially localized DNA
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Strand displacement with DNA hairpins

DNA
hairpin
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Single-stranded DNA can bind to itself
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Strand displacement with DNA hairpins




Strand displacement with DNA hairpins
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Strand displacement with DNA hairpins
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Rows of DNA hairpins act as wires

hairpin transmission line
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Rows of DNA hairpins act as wires
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Rows of DNA hairpins act as wires
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Experimental validation

single spacing
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Take-home message

We can propagatea | Wireof | non- | _ . .| < —H
- - length n | localized
signal in a controlled

way using only a fixed Nbr of
o
number of sequences 2n+| 3 ®

MW
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Localized OR gates
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Localized adder circuits
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Take home message

Localization enables composability of DNA circuits
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Outlook and future work

|. Communication between multiple origami enables circuits scale-up

outputs outputs
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Summary

|. Circuits that can work in cells and other “wet” environments have
interesting applications as therapeutics and diagnostics.
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Summary

|. Circuits that can work in cells and other “wet” environments have
interesting applications as therapeutics and diagnostics.

2. Synthetic DNA is an engineering material for the construction of
nanoscale structures and circuits.

3. DNA strand displacement circuits are the largest rationally designed
molecular circuits so far but size and reliability are limited by the need to
make sequences of all components orthogonal.

4. Spatial isolation allows us to organize the flow of information in a better
way and makes it much easier to design and compose large circuits.
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